2,880 research outputs found

    GRBs from unstable Poynting dominated outflows

    Get PDF
    Poynting flux driven outflows from magnetized rotators are a plausible explanation for gamma-ray burst engines. We suggest a new possibility for how such outflows might transfer energy into radiating particles. We argue that the Poynting flux drives non-linearly unstable large amplitude electromagnetic waves (LAEMW) which ``break'' at radii rt1014r_t \sim 10^{14} cm where the MHD approximation becomes inapplicable. In the ``foaming'' (relativisticly reconnecting) regions formed during the wave breaks the random electric fields stochastically accelerate particles to ultrarelativistic energies which then radiate in turbulent electromagnetic fields. The typical energy of the emitted photons is a fraction of the fundamental Compton energy ϵfc/re \epsilon \sim f \hbar c/r_e with f103f \sim 10^{-3} plus additional boosting due to the bulk motion of the medium. The emission properties are similar to synchrotron radiation, with a typical cooling time 104\sim 10^{-4} sec. During the wave break, the plasma is also bulk accelerated in the outward radial direction and at larger radii can produce afterglows due to the interactions with external medium. The near equipartition fields required by afterglow models maybe due to magnetic field regeneration in the outflowing plasma (similarly to the field generation by LAEMW of laser-plasma interactions) and mixing with the upstream plasma.Comment: 15 pages, 1 figur

    Practical issues in catalytic and hydrothermal biomass conversion: concentration effects on reaction pathways

    Get PDF
    Converting biomass to biofuels and chemicals calls for practical and simple processes, since it must compete economically with both burning and anaerobic bacterial digestion. Here we employ concentrated glucose solutions as a biomass model compound, using a pressure-controlled batch reactor setup for hydrothermal and catalytic upgrading. We examine the hydrothermal, acid-catalysed and base-catalysed reactions of concentrated glucose giving gases, tar (biofuels), and char products, and show that working at practical (i.e., high) feed concentrations has a strong effect on the reaction pathways

    Understanding catalytic biomass conversion through data mining

    Get PDF
    Catalytic conversion of biomass is a key challenge that we chemists face in the twenty-first century. Worldwide, research is conducted into obtaining bulk chemicals, polymers and fuels. Our project centres on glucose valorisation via furfural derivatives using catalytic hydrogenation. We present here new results for a set of 48 bimetallic catalysts supported on silica, and demonstrate the application of data mining tools to identify major trends in the data. These results are combined with a full factorial data set for the hydrogenation of 5-ethoxymethylfurfural over alumina-supported transition metal catalysts. All the catalysts in the combined datasets were synthesized and tested for performance under identical conditions. This, combined with the fact that no combinations of metals were left out, enables the use of advanced data mining tools. The paper describes the data and highlights the relevant trends from a chemist’s viewpoint
    corecore